Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere
نویسندگان
چکیده
Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised. The lower chromosphere contains neutral atoms, the existence of which greatly increases the efficiency of the damping of waves due to collisional friction momentum transfer. More specifically the Cowling conductivity can be up to 12 orders of magnitude smaller than the Spitzer value, so that the main damping mechanism in this region is due to the collisions between neutrals and positive ions (Khodachenko et al. 2004, A&A, 422, 1073). Using values for the gas density and temperature as functions of height taken from the VAL C model of the quiet Sun (Vernazza et al. 1981, ApJS, 45, 635), an estimate is made for the dependance of the Cowling conductivity on height and strength of magnetic field. Using both analytic and numerical approaches the passage of Alfvén waves over a wide spectrum through this partially ionised region is investigated. Estimates of the efficiency of this region in the damping of Alfvén waves are made and compared for both approaches. We find that Alfvén waves with frequencies above 0.6 Hz are completely damped and frequencies below 0.01 Hz unaffected.
منابع مشابه
Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere
Magnetohydrodynamic (MHD) waves are widely considered as a possible source of heating for various parts of the outer solar atmosphere. Among the main energy dissipation mechanisms which convert the energy of damped MHD waves into thermal energy are collisional dissipation (resistivity) and viscosity. The presence of neutral atoms in the partially ionized plasmas of the solar photosphere, chromo...
متن کاملDamping of visco-resistive Alfven waves in solar spicules
Interaction of Alfven waves with plasma inhomogeneity generates phase mixing which can cause the dissipation of Alfven waves. We investigated the dissipation of standing Alfven waves due to phase mixing at the presence of steady flow and sheared magnetic field in solar spicules. Moreover, the transition region between chromosphere and corona was considered. Our numerical simulation showed that ...
متن کاملThe emergence of magnetic flux through a partially ionised solar atmosphere
We present results from 2.5D numerical simulations of the emergence of magnetic flux from the upper convection zone through the photosphere and chromosphere into the corona. Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised, in particular the lower chromosphere. This leads to Cowling resistivities orders of magnitude larger than the Coulom...
متن کاملA Study of Alfvén Wave Propagation and Heating the Chromosphere
Alfvén wave propagation, reflection, and heating of the chromosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma, neutral fluid, and Maxwell’s equations with incorporation of the Hall effect and strong electron–neutral, electron–ion, and ion–neutral collisions. We have developed a numerical model based on an implicit backward difference formula of seco...
متن کاملAlfvén Waves and Turbulence in the Solar Atmosphere and Solar Wind
We solve the problem of propagation and dissipation of Alfvénic turbulence in a model solar atmosphere consisting of a static photosphere and chromosphere, transition region, and open corona and solar wind, using a phenomenological model for the turbulent dissipation based on wave reflection. We show that most of the dissipation for a given wave-frequency spectrum occurs in the lower corona, an...
متن کامل